| word | etymology | definition | In sentence | Link to other
mathematical
words | Link to other
areas of the
curriculum | |----------------|--|--|---|--|---| | 2D | From Latin dinetri
meaning 'to
measure out' | 2D is an
abbreviation
of two-
dimensional. | A 2D shape only exists on a plane and doesn't occupy space. A square is a 2D shape. | three-
dimensional | | | 3D | From Latin dinetri
meaning 'to
measure out' | 3D is an abbreviation of three-dimensional. | A 3D shape occupies space. A cylinder is a 3D shape. | two-
dimensional | | | acute | From Latin actus
meaning 'to
sharpen' | an angle that
is smaller than
a right angle
(90°) | This is an example of an acute angle. | | | | add | From Latin addere meaning 'to join or attach' | To combine
two numbers
together. | 3 add 4 is equal to 7 | | adhesive | | adjacent | From Latin
adiacere
meaning 'border
upon' | next to or adjoining | The red sides of this pentagon are adjacent. | | | | angle | From Latin
anglus meaning
'a corner' | The space
where two
intersecting
lines meet. | | triangle
rectangle | | | anti-clockwise | From Greek anti
meaning
'opposite' | movement in
the opposite
direction
to the hands
of a clock | | | | | area | From Latin area
meaning 'open
space' | Area is the space a surface takes up inside its perimeter. It is measured in square units. | The area of a rectangle with sides of 8 cm and 2 cm will be 16 cm ² . | | | | arc | From Latin arcus
meaning 'a bow,
an arch' | An arc is a portion of the circumference of the circle. | The arc is a curved line. | | | |-------------------|--|--|---|-------------------------|---------| | ascending | From Latin ascendere meaning 'to climb' | increasing in
size or value | The numbers 10, 20, 30, 40 are written in ascending order. | descending | | | associative law | From Latin associare meaning 'join with' | This is the law that no matter how the different parts of addition (or multiplication) are grouped, the answer will be the same. (7 + 4) + 2 = 13 7 + (4 + 2) = 13 | | | Society | | altogether | From Old
English togædere
meaning 'in a
group' | This means
the same as
'in total'. | If one part has 3 ones and the other part has 4 ones, altogether there will be 7 ones. | | | | array | From Old French areyer meaning 'to put in order' | counters in columns and rows to show multiplication and division | This array shows 3 x 4 = 12 4 x 3 = 12 12 ÷ 4 = 3 12 ÷ 3 = 4 | | | | approximate | From Latin proximare meaning 'come near' | an estimate
that is not an
exact amount | The answer to the calculation
102 + 199 is approximately
300 | | | | asymmetrical | From Greek syn
meaning
'together' and
metron meaning
'measure' | made up of
parts that
are not equal
or equivalent | This pattern is asymmetrical. | symmetry
symmetrical | | | average
(mean) | | The average of a set of data is calculated by adding the quantities together and dividing the result by the amount of quantities. | The average of 6, 5 and 4 is 5. | | | | axis (plural
axes) | From Latin axis
meaning 'axle,
pivot' | An axis is a reference line. On graphs, the axes are used to show measuring scales. | The y-axis is vertical. The x-axis is horizontal. y-axis x-axis | | | |-----------------------|---|---|---|---|----------------------------| | bar graph | From Greek
graphos meaning
'writing' | a
representation
of data that is
a snapshot in
time | This bar graph shows the favourite colours of children in Year 3. | parallelogram | biography
autobiography | | brackets | | the symbols used to separate parts in a multi-step calculation | The brackets mean that the addition is completed before the multiplication (2 + 3) x 7 | | | | capacity | From Latin capacitatem meaning 'capable of holding much' | the amount of
liquid a
container can
hold | The capacity of a can is about 330 ml | | | | centimetre | From Latin centum meaning 'hundred' and Greek metron meaning 'measure' | a unit of
length | There are 100 centimetres in one metre. x 100 100 cm = 1 m + 100 | metre
millimetre
kilometre
century | centurion | | chart | From Late Latin
charta meaning
'map' | information in
the form of a
table, graph
or diagram | | | | | chronological | From Latin form of Greek khronos meaning time | occurring in
time order | When you arrange events in chronological order, you start with the earliest. | | | | circle | From Latin
circulus meaning
'small ring or
hoop' | the name of a
2D shape with
one curved
side | A circle has no vertices. | circumference | circumnavigate | | circumference | From Latin circum
meaning 'around'
and ferre
meaning 'to
carry' | the distance
all the way
around the
outside of a
circle | The circumference is a curved line. | circle
difference | circumnavigate | | clockwise | | movement in
the direction
of the hands
of a clock | | | | |--------------------|---|--|---|----------|--| | common factor | From Latin
communis
meaning 'shared
by all' | a factor of
two or more
given numbers | The common factors of 12 and 18 are 1, 2, 3 and 6 18 12 (1)x 18 12 (2)x 9 2)x 6 (3)x 6 3)x 4 | | | | common
multiple | From Latin communis meaning 'shared by all' From Latin multi meaning 'many and plus meaning 'fold' | a multiple of
two or more
given numbers | 20 is a common multiple of 4 and 5 | | | | compare | From Latin com
meaning 'with'
and par meaning
'equal' | using these symbols to find the larger and the smaller amount more than > less than < equal to = | | | | | cone | From Latin conus
meaning 'cone,
peak of a helmet' | a 3D shape with one circular face and one curved surface which tapers to a point | A cone has no straight edges | | | | congruent | From Latin
congruere
meaning 'agree' | shapes that
are exactly the
same in size
and
dimensions | Triangles A and B are congruent, but triangle C is different. | | | | consecutive | From Latin com
meaning 'with,
together; and
sequi meaning
'to follow' | numbers that
follow each
other | 1, 2, 3 are consecutive numbers 2, 4, 6 are consecutive even numbers | sequence | | | coordinate | From Latin
ordinus meaning
'set in order' | the position of
a point,
usually
described
using pairs of
number | The coordinate (2, 3) describes a point that is 2 on the x-axis and 3 on the y-axis. | | | | cube | From Greek kybos
meaning 'a six-
sided dice' | a 3D shape
with six
identical
square faces | The net of a cube is formed of six joined squares | cuboid
cube number | |----------------|---|---|---|---| | cuboid | From Greek kybos
meaning 'a six-
sided dice' and
eidos meaning 'to
see' | a 3D shape
with six
rectangular
faces | Most boxes are a cuboid shape | cube
cube number | | cube number | From Greek kybos
meaning 'a six-
sided dice' | the product of
three equal
factors | 125 is a cube number because $5^3 = 5 \times 5 \times 5 = 125$ 5 cm 5 cm | cube
cuboid | | curved surface | From Latin curvare meaning 'to bend' From Old French sur meaning 'above' and face meaning 'face' | a non-plane
surface of a
3D shape. | Both cones and cylinders have a curved surface | | | cylinder | From Greek
kylindein
meaning 'to roll' | a 3D shape
with two
circular faces
joined by a
curved surface | A cylinder does not have any vertices. | | | decagon | From Greek deka
meaning 'ten'
and gōnia
meaning 'corner,
angle' | a polygon
with ten sides
and ten angles | Both of these shapes are decagons. | pentagon hexagon heptagon octagon nonagon hendecagon dodecagon polygon diagonal | | decreasing | From Latin de
meaning 'down,
away from' and
crescere meaning
'to grow' | to become
smaller in
value. | This number pattern is decreasing by one each time. 20, 19, 18 | | | degree | From Latin de
meaning 'down'
and gradus
meaning 'a step' | the unit of
measure for
angles | A right angle is 90° | | | denominator | From Latin denominare meaning 'to name' From Latin de meaning 'down' and scandere meaning 'to climb' | This is the number below the vinculum in a fraction. It shows the number of equal parts that the whole is divided into. decreasing in size or value | The denominator shows that this shape has been divided into five equal parts. 3 5 These numbers are in descending order. 90, 40, 30, 10 | ascending | |-------------|---|---|---|---| | diagonal | From Greek diagonios meaning 'from angle to angle' From dia meaning 'across' and gōnia meaning 'corner, angle' | | | pentagon hexagon heptagon octagon nonagon decagon hendecagon dodecagon polygon diameter | | diameter | From Greek dia
meaning 'across'
and metron
meaning
'measure' | a straight line from one point on the circumference to another which passes straight through the centre of a circle | The diameter is double the radius | diagonal centimetre metre kilometre millimetre | | difference | From Latin dis
meaning 'apart,
away from' and
ferre meaning 'to
carry' | The difference between two numbers is found by subtracting the smaller number from the bigger number. | The difference between 7 and 4 is 3. | circumference | | digit | From Latin
digitus meaning
'finger or toe' | one of the ten
numerals
(0 1 2 3 4 5 6
7 8 9) that
forms a
number | In the number 54, the digit 5 has a value of 50 and the digit 4 has a value of 4. | | | divide | From Latin dis
meaning 'apart'
and videre
meaning 'to
separate' | to share or
group into
equal parts | I can divide 12 into 3 equal groups of 4. 12 divided by 3 is equal to 4. | | | |-----------|---|--|--|---|---------| | dodecagon | From Greek dodeka meaning 'twelve' and gōnia meaning 'corner, angle' | a polygon
with twelve
sides and
twelve angles | Both of these shapes are dodecagons | pentagon hexagon heptagon octagon nonagon decagon hendecagon polygon diagonal | | | dividend | From Latin dis
meaning 'apart'
and videre
meaning 'to
separate' | the amount
that is being
divided | In this calculation,
the dividend is 96.
$96 \div 4 = 24$ $2 4$ $4 9_{1}6$ | divisible
divisor
divide | | | divisible | From Latin dis
meaning 'apart'
and videre
meaning 'to
separate' | If a number can be divided by a divisor without a remainder, it is divisible by that number. | 96 is divisible by
4 because it can be
divided by 4 exactly
with no remainder
$96 \div 4 = 24$
2 4
$4 9_1 = 6$ | divisor
divide
dividend | | | divisor | From Latin dis
meaning 'apart'
and videre
meaning 'to
separate' | the number of
that the
dividend is
being divided
by | In this calculation,
the divisor is 4.
$96 \div 4 = 24$
$2 \frac{4}{9_16}$ | dividend
divisible
divide | | | equal | From Latin
aequus meaning
'level, flat' | Equal means
'the same' | 3 add 4 is equal to 7 | equivalent
equidistant
equation
equilateral | equator | | equation | From Latin
aequus meaning
'level, flat' | a group of
numbers and
symbols that
includes an
equal symbol | This is an addition equation. 3 + 4 = | equivalent
equidistant
equal
equilateral | equator | | equilateral | From Latin aequus meaning 'level, flat' and lateralis meaning 'belonging to the side' | having all
sides the same
length | An equilateral triangle has three equal sides. | equivalent equidistant equal equation quadrilateral | equator | |-------------|---|--|--|---|---------| | equivalent | From Latin aequus meaning 'level, flat' and valere meaning 'be worth' | having the
same value | These fractions are equivalent as they have the same value. $\frac{3}{5} = \frac{6}{10}$ | equal
equation
equilateral | equator | | estimate | | an
approximately
accurate guess | A sensible estimate for this answer would be 300 | | | | even number | | An even
number has a
0, 2, 4, 6 or 8
in the ones
column. They
can all be
divided by 2. | 48 is an even number. 37 is an odd number. TO 4 8 3 7 | | | | expression | | An expression is one or a group of numbers, symbols or operators. It does not use <>>=. If an equality or inequality symbol is used, the expression becomes an equation. | 2 + 5 32 | | | | face | | one of the
plane surfaces
of a solid (3D)
shape | A cube has six identical square faces. | | | | factor | | a number that
can multiply
by another
factor to make
a given
number | The factors of 12 are 1, 2, 3, 4, 6 and 12 12 1 x 12 2 x 6 3 x 4 | | | | C | | | Lw 6 : 10 | T | |------------|-----------------------|---------------------|--|------------| | factorise | | to identify the | We can factorise 12 | | | | | factors of a | by finding its factor pairs. | | | | | given number | The factors of 12 are | | | | | | 1, 2, 3, 4, 6, 12 | | | | | | 12 | | | | | | 1 x 12
2 x 6 | | | | | | 3 x 4 | | | formula | | an algebraic | The area of a rectangle | | | Jorniala | | expression of a | can be found using the | | | | | rule | formula a = w x h | | | | | Tule | (area = width x height) | | | | | | (area = wiath x height) | | | | | | height | | | | | | l lieight | | | | | | ļ | | | | | | width | | | fraction | From Latin | Λ | 1 2 4 1 | | | fraction | frangere meaning | A
representation | $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{4}{3} & 1\frac{1}{3} \end{bmatrix}$ | | | | 'to break | of the part of | - | | | | something in | a whole or a | | | | | pieces, shatter' | collection of | | | | | pieces, silutter | objects | | | | gram | From Greek | a unit of mass | There are | | | gram | gramma meaning | a arme of mass | 1000 grams | | | | 'small weight' | | in one kilogram. | | | | I sman weight | | × 1000 | | | | | | | | | | | | 1000 g = 1 kg | | | | | | ÷ 1000 | | | hendecagon | From Greek | a polygon | Both of these shapes | pentagon | | | hendeka meaning | with eleven | are hendecagons | hexagon | | | 'eleven' and | sides and | | heptagon | | | <i>g</i> ōnia meaning | eleven angles | | octagon | | | 'corner, angle' | _ | | decagon | | | , , | | | dodecagon | | | | | | polygon | | | | | | nonagon | | | | | / | diagonal | | heptagon | From Greek hepta | a polygon | Both of these shapes | pentagon | | | meaning 'seven' | with seven | are heptagons | hexagon | | | and <i>g</i> ōnia | sides and | | octagon | | | meaning 'corner, | seven angles | | decagon | | | angle' | | | hendecagon | | | | | | dodecagon | | | | | · · · · · · · · · · · · · · · · · · · | polygon | | | | | | nonagon | | | | | | diagonal | | hexagon | From Greek hexa | a polygon | Both of these shapes | pentagon | | | meaning 'six' and | with six sides | are hexagons | heptagon | | | <i>g</i> onia meaning | and six angles | | octagon | | | 'corner, angle' | | | decagon | | | | | | hendecagon | | | | | | dodecagon | | | | | | polygon | | | | | | nonagon | | 1 | | | | diagonal | | horizontal | From Greek | a line that is | The x-axis on a graph | | horizon | |----------------------|---|---|---|-----------|----------| | | horizein meaning | parallel to the | is horizontal. | | | | | 'bound, limit' | horizon | | | | | improper
fraction | From Latin in meaning 'not and From Old French propre meaning 'exact' From Latin | a fraction
where the
numerator is
greater than
the
denominator | Improper fractions are greater than one whole. 5 4 | | | | | frangere meaning
'to break
something in
pieces, shatter' | | | | | | increasing | From Latin
crescere meaning
'to grow' | Increasing
means to
become
greater in
value. | This number pattern is increasing by one each time. 18, 19, 20 | | | | integer | From Latin
integer meaning
'intact, whole' | a whole
number that
can be
positive or
negative | 8 and -8 are integers , but 0.8
and – 0.8 are not. | | integral | | intersect | From Latin inter
meaning
'between' and
secare meaning
'to cut' | the point at
which two or
more lines
meet | In a graph, the x-axis
and y-axis intersect
at (0,0) | | | | inverse
operation | From Latin inversus meaning 'turn about' | opposite
operations
that 'undo'
each other | Addition and subtraction are inverse operations. $3 + 4 = 7$, so $7 - 4 = 3$ | | | | irregular | From Latin in
meaning 'not'
and regularis
meaning 'having
rules' | 'irregular' is used to describe shapes where the sides and the angles are not the same size | The angles in this shape are different, so it is irregular. | regular | | | isosceles | From Greek isos
meaning 'equal'
and skelos
meaning 'leg' | a shape with
only two sides
of equal
length | An isosceles triangle has two equal sides and two equal angles. | isometric | | | kilogram | From Greek khilioi
meaning
'thousand' and
gramma meaning
'small weight' | a unit of mass | There are 1000 grams in one kilogram. | kilometre | | |------------|---|--|---|---------------------------------------|----------------------------| | kilometre | From Greek khilioi
meaning
'thousand' and
metron meaning
'measure' | a metric unit
of measure
equal to one
thousand
metres | There are 1000 metres in one kilometre x 1000 1000 m = 1 km ÷ 1000 | kilogram | | | kite | | a 2D shape
with two pairs
of equal
length
adjacent sides | The diagonals of a kite intersect at right angles. | | | | length | | a linear
measurement | | | | | line graph | From Greek
graphos meaning
'writing' | a graph that uses lines to connect the points of a chart | A line graph shows a change over time Output | parallelogram | biography
autobiography | | litre | | a unit of
capacity or
volume | There are 1000 millilitres in one litre x1000 1000 ml = 11 +1000 | millilitre | | | metre | From Greek
metron meaning
'measure' | a unit of
length | There are 1000 metres in one kilometre. | centimetre
millimetre
kilometre | | | millilitre | From Latin mille
meaning
'thousand' | a unit of
capacity or
volume | There are 1000 millilitres in one litre | millimetre | | | millimetre mixed number | From Latin mille
meaning
'thousand' and
Greek metron
meaning
'measure' | a metric unit of length equal to one thousandth of a metre. a number consisting of an integer and a fraction | There are 10 millimetres in one centimetre. Mixed numbers are greater than one whole. $1\frac{1}{4}$ | millilitre | |--------------------------|---|---|---|---| | multiple | From Latin multi
meaning 'many
and plus meaning
'fold' | a multiple is
the result of
multiplying a
number by an
integer. | 12 is a multiple of
4 because 4 x 3 = 12 | | | multiply | From Latin multi
meaning 'many
and plus meaning
'fold' | to increase a
quantity by a
scale factor | When you multiply
3 by 4, the answer
will be 12. | | | negative
integer | From Latin
integer meaning
'intact, whole' | a whole
number less
than zero | In temperature, a negative number is below freezing point 8, -5 -6 | | | negative
number | | a number less
than zero | In temperature, a negative number is below freezing point 8, -5 -6.5 | | | net | | a shape
formed of 2D
shapes that
folds together
to form a 3D
polyhedron | The net of a cube is made up of 6 connected squares. | | | nonagon | From Greek nona
meaning 'nine'
and gōnia
meaning 'corner,
angle' | a polygon
with nine sides
and nine
angles | Both of these shapes are nonagons | pentagon hexagon heptagon octagon decagon hendecagon dodecagon polygon diagonal | | non unit | | a fraction with | Those are evameles | <u> </u> | |------------|------------------|-----------------|---|------------------| | non-unit | | a fraction with | These are examples | | | fraction | | a numerator | of non-unit | | | | | greater than 1 | fractions. | | | | | | $\frac{3}{5}$ | | | | | | $\overline{5}$ | | | | | | 2 | | | | | | $\frac{1}{3}$ | | | | Fuere Letin | A number is | | a vine a rate ii | | number | From Latin | | Some examples of numbers are 1 7.3 -9 -2.4 | numerator | | | numerus meaning | an arithmetic | 1 7.3 -9 -2.4 | numeral | | | 'a number, | value that | | | | | quantity' | represents a | | | | | | quantity. They | | | | | | include whole | | | | | | and decimal | | | | | | positive and | | | | | | negative | | | | | F | numbers. | | | | numerator | From Latin | The numerator | The numerator shows | numeral | | | numerus meaning | is the number | that 3 out of the 5 equal parts | number | | | ʻa number, | above the | are shaded. | | | | quantity' | vinculum in a | $\frac{3}{5}$ | | | | | fraction. It | | | | | | shows the | 5 | | | | | number of | | | | | | parts out of | | | | | | the whole. | | | | numeral | From Latin | A numeral is a | The number 4 can be | numerator | | | numerus meaning | symbol (or | represented by these | number | | | ʻa number, | group of | numerals (among others) | | | | quantity' | symbols) used | | | | | | to represent a | 4 four | | | | | number. This | | | | | | could be using | | | | | | digits or | | | | | | letters. | | | | odd number | | An odd | 37 is an odd number. | | | | | number has a | 48 is an even number. | | | | | 1, 3, 5, 7 or 9 | T 0 | | | | | in the ones | T O | | | | | column. They | 1 0 | | | | | cannot be | 4 8 | | | | | divided by 2 | 3 7 | | | | | without | <i>J</i> , | | | | | leaving a | | | | | | remainder. | | | | operation | From Latin opera | а | In this calculation, | | | | meaning 'work, | mathematical | the operation is | | | | effort' | process | addition. | | | | | (addition, | 5 + 3 = 8 | | | | | subtraction, | | | | | | multiplication | | | | | | and division) | <u> </u> | | origin | From Latin
originem meaning
'beginning,
source' | the point at
which axes in
a coordinates
grid cross | The origin is point (0,0) 4 3 SERIES 1 0 1 2 3 4 x-axis | | | |---------------|--|--|--|--|--| | parallel | From Greek para
meaning 'beside'
and allēlois
meaning 'each
other' | Parallel lines will stay the same distance apart and never meet, regardless of how far they are extended | The opposite sides in a rectangle are parallel. | parallelogram | paralysed
Paralympics | | parallelogram | From Greek para meaning 'beside', 'allēlois meaning 'each other' and graphein meaning 'to write' | a 2D shape that has two pairs of parallel lines and two pairs of equal opposite angles | The opposite sides in a parallelogram are parallel. | parallel | paralysed
Paralympics
biography
autobiography | | partition | | to split a
number into
two or more
groups | The number 37 can be partitioned into 30 and 7. | | | | percentage | From Modern
Latin per centum
meaning 'by the
hundred' | the number of parts per hundred, written using the % symbol. | 10% means 10 out of
100 | century
centimetre | | | pentagon | From Greek penta
meaning 'five'
and gōnia
meaning 'corner,
angle' | a polygon
with five sides
and five
angles | Both of these shapes are pentagons | hexagon heptagon octagon nonagon decagon hendecagon dodecagon polygon diagonal | | | perimeter | From Greek peri
meaning
'around' and
metron meaning
'measure' | the distance
around the
exterior of a
2D shape | If one side of this regular pentagon is 3 cm, the perimeter must be 15 cm. | | | | perpendicular | From Latin
perpendere
meaning 'to
balance carefully' | a pair of lines
that meet at a
right angle a zero used to
show that a
place value | The adjacent sides of a rectangle are perpendicular. We use a place holder in the ones column to show that the number is | | | |--------------------|--|--|---|--|----------------------------| | pie chart | | column that has a value of zero | HTO 4 6 0 This pie chart shows the | | | | | | representation of a set of data where each segment represents a part of the whole | favourite fruits of children in year 5 Pie chart showing the favourite fruits of year 5 Stranderrice 12 Apples 3 Barberries 7 Barbaras 8 | | | | polygon | From Greek polys
meaning 'many'
and gōnia
meaning 'corner,
angle' | a 2D shape
with three or
more straight
lines | Triangles and pentagons are examples of polygons. | polyhedron
pentagon
hexagon
octagon
nonagon
decagon
hendecagon
diagonal | polytheistic
polyhedron | | polyhedron | From Greek polys
meaning 'many'
and hedra
meaning 'seat,
base, face' | a 3D shape
with flat faces
that are
polygons | Cuboids and square-based pyramids are examples of polyhedra. | polygon
tetrahedron | polytheistic
polygon | | positive
number | | a number
greater than
zero | Zero is not a positive number or a negative number 8 5 6.5 | | | | prime factor | | a factor of a | The prime factors of 12 are 2 | | |-----------------|------------------------------|---|---|--| | prime juctor | | number that is prime | and 3 $\frac{12}{1 \times 12}$ | | | | | | 2x6
3x4 | | | | | | 12 can be shown as the product of prime factors: 2 x 2 x 3 or 2 ² x 3 | | | prime number | | a whole | 11 and 13 prime numbers as | | | | | number that
only has two
factors: itself
and 1 | they are
only divisible by themselves and
1. | | | prism | | a 3D solid
with two | A triangular prism
has five faces (three | | | | | identical, | rectangles and two | | | | | parallel bases
and otherwise | triangles). | | | | | rectangular
faces | | | | | | Juces | | | | | | | V / \ | | | product | From Latin
producere | the result of
multiplying | 12 is the product of 3 and 4. | | | | meaning
'something | two numbers
together | | | | | produced' | - | | | | proper fraction | | a fraction with
a value that is
less than 1 | In proper fractions , the numerator is less than the | | | | | | - | | | | | | denominator $\frac{1}{4}$ | | | proportion | From Latin proportionem | This is a comparison | If two fifths of a class is boys,
the proportion of the class that | | | | meaning
'comparative | between two
or more part | is girls is three fifths. | | | | relation' | of a whole or
a group, | | | | | | usually | | | | | | represented as a fraction, | | | | | | decimal or percentage. It | | | | | | is a part- | | | | | | whole
relationship. | | | | protractor | From Latin
protrahere | a measuring
tool used to | A protractor measures angles in degrees (°) | | | | meaning 'to draw
forward' | measure the
size of angles | 120" | | | | | | 18 | | | | | | | | | quadrant | From Latin quadri
meaning 'four' | one of four
sections that a
coordinate
grid is divided
into | second quadrant first quadrant (1,3) | quadrilateral
square | quadrat | |---------------|--|---|--|-----------------------------------|---------| | quadrilateral | From Latin quadri
meaning 'four'
and latus
meaning 'the
side' | a polygon
with four sides
and four
angles | Both of these shapes are quadrilaterals. | quadrant
equilateral
square | quadrat | | quotient | | the result
when the
dividend is
divided by the
divisor | In this calculation,
the quotient is 24.
$96 \div 4 = 24$
24
49_16 | | | | radius | | a straight line from one point on the circumference to the centre of the circle | The radius is half the diameter. | | | | ratio | | This is a comparison between two or more parts of a whole or group. It is a part-part relationship. | For every 2 girls, there are 3 boys. The ratio of girls to boys is 2:3. | | | | rectangle | From Latin reg meaning 'move in a straight line' and anglus meaning 'a corner' | a quadrilateral
with four right
angles | A square is an example of a rectangle. | rectilinear
angle
triangle | | | rectilinear | From Latin reg
meaning 'move in
a straight line'
and linear
meaning 'line' | A shape that has straight, perpendicular sides (which means they meet at right angles) | A rectilinear shape can be divided up into other rectangles. | rectangle | | | remainder | From Latin
remanere
meaning 'to stay
behind' | the amount
remaining
after division
where a whole
number
answer is
needed | 11 can be divided by 4 three times with a remainder of 3 $11 \div 4 = 2 \text{ r } 3$ $0 \text{ 2 r } 3$ $4 \text{ 1}_{1} 1$ | | | | reflection | From Latin re
meaning 'back'
and flectere
meaning 'to
bend' | a mirror
image that is
equidistant
from a mirror
line | This shape has been reflected in the mirror line. | reflex angle | |-------------------------|---|---|---|--------------| | reflex angle | From Latin re
meaning 'back'
and flectere
meaning 'to
bend' | an angle that
is larger than
a straight line
(180°) but
smaller than a
complete circle
(360°) | This is an example of a reflex angle. | reflection | | rhombus | | an equilateral
parallelogram | A rhombus has four equal length sides and two pairs of identical opposite angles. | | | regular | From Latin
regularis
meaning 'having
rules' | 'regular' is used to describe shapes where the sides and the angles are all the same size | The sides and the angles in this shape are the same, so it is regular. | irregular | | repeated
addition | | showing
multiplication
by adding
equal parts to
make a whole | I can show 5 x 4 as repeated addition: 5 + 5 + 5 + 5 = 20 5 5 5 5 20 | | | repeated
subtraction | | showing
division by
subtracting
equal parts
from the
whole | I can show $20 \div 5$ as repeated subtraction:
$20 - 5 - 5 - 5 - 5 = 0$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | right angle | | an angle of
exactly 90° | A square has four right angles. | | | Roman
numeral | | a system of
symbols used
to represent
numbers that
was developed
by the
Romans | These are the 7 Roman numerals used to form numbers. = 1 | | | scalene | From Greek skalenōs meaning 'uneven, unequal' | a triangle that
has three
unequal sides
and three
unequal
angles | A scalene triangle is an irregular shape. | | | |-------------------------|---|--|--|---|-------------| | sequence | From Latin sequi
meaning 'to
follow' | A list of things
(usually
numbers) in a
particular
order. | Sequences might go up or down in multiples of different numbers, e.g., 4, 6, 8 1, 2, 3, 4,5 10, 20, 30, 40 | consecutive | consequence | | similar | From Latin similis
meaning 'like' | similar shapes
have the same
internal angles
and the side
lengths are in
the same
proportion | All squares are similar, but not necessarily congruent. | | | | side | | a straight line
that forms a
boundary of a
shape | A square has four straight sides. | | | | simplify | From Latin
simplex meaning
'simple' | writing a
number
(usually a
fraction) in its
simplest form | $\frac{10}{12}$ can be simplified to $\frac{5}{6}$ | | | | square | From Latin
quadrus meaning
'a square' | a quadrilateral
with four
equal length
sides and four
right angles | A square is a type of rectangle. | square number
square-based
pyramid
quadrant
quadrilateral | | | square-based
pyramid | From Latin
quadrus meaning
'a square' | a pyramid is a 3-D shape with triangular faces that taper to a point called an apex | A square-based pyramid has one square face and four triangular faces. | square
square number
quadrant
quadrilateral | | | square number | From Latin
quadrus meaning
'a square' | the product of
two equal
factors | 25 is a square number because $5^2 = 5 \times 5 = 25$ 5 cm | square
square-based
pyramid
quadrant
quadrilateral | | | subtract | From Latin
subtractus
meaning 'take
off' | Subtract
means to take
away or
remove one
amount from
another | 7 subtract 3 is equal to 4. 3 | | | |-------------|--|---|--|-----------------------------|-----------| | sum | From Old French
somme meaning
'amount, total' | The result of
adding two or
more numbers
together | The sum of 3 and 4 is 7. 7 4 | | | | symmetrical | From Greek syn
meaning
'together' and
metron meaning
'measure' | Made up of
identical
parts facing
each other | This pattern is symmetrical. | symmetry
asymmetrical | | | symmetry | From Greek syn
meaning
'together' and
metron meaning
'measure' | a line of symmetry is a line where a shape fits exactly onto itself when it is folded in half | A rectangle has two lines of symmetry. | symmetrical
asymmetrical | | | trapezium | From Latin tra
meaning 'four
and peza
meaning 'foot' | a quadrilateral
with exactly
one pair of
parallel sides | A trapezium will also have two pairs of equal angles. | | | | temperature | | the measure of
heat | The temperature that water freezes at is 0°c. | | temperate | | tetrahedron | From Greek polys
meaning 'many'
and hedra
meaning 'seat,
base, face' | a 3D shape
with four
triangular
faces | Another name for a tetrahedron is a triangle-based pyramid. | polyhedron | | | total | From Latin totus
meaning 'all at
once' | the answer
found by
adding
numbers
together | If one part has 3 ones and the other part has 4 ones, there will be 7 ones in total. | | | | transformation | From Latin trans
meaning 'across,
beyond' and
formare meaning
'to form' | a collective term for the way that shapes have been changed to make a congruent or similar shape | Translation, rotation and reflection are examples of transformation. | translate | transparent
trans-Atlantic
transport | |-------------------------------|---|--|--|------------------------------------|--| | translate | From Latin trans
meaning 'across,
beyond' and
lātus meaning
'carried' | A translated shape is moved to a different position but it stays the same size. | Shape A has been translated three squares right and 2 squares down. | transformation | transparent
trans-Atlantic
transport | | triangle-based
pyramid | | A pyramid is a 3-D shape with triangular faces that taper to a point called an apex. | A triangle-based pyramid (or tetrahedron) has four triangular faces | triangle | tripod | | triangle | From Latin tri
meaning 'three'
and angulus
meaning 'angle' | A polygon
with three
sides and
three angles | These are all examples of triangles. | angle
triangle-based
pyramid | tripod | | unit fraction | | a fraction with
a numerator
of 1 | These fractions are unit fractions. $\frac{1}{6}$ | | | | vertical | From Latin vertex
meaning 'highest
point' | A vertical line runs up and down and will intersect a horizontal line at a right angle. | The y-axis on a grid is vertical . | | | | vertically
opposite angles | From Latin vertex
meaning 'highest
point' | angles which
are positioned
opposite each
other when
two lines
intersect | vertically opposite angles not vertically opposite angles | | | | vertex (plural
vertices) | From Latin vertex
meaning 'highest
point' or vertere
meaning 'to turn' | angles which
are positioned
opposite each
other when
two lines
intersect | A polygon has five vertices. | | |-----------------------------|---|---|--|--| | vinculum | From Latin vincire
meaning 'to bind' | a horizontal line that separates the numerator and denominator in a fraction | This line is the vinculum. $\frac{3}{5}$ | |